Learning Must-Link Constraints for Video Segmentation Based on Spectral Clustering
نویسندگان
چکیده
In recent years it has been shown that clustering and segmentation methods can greatly benefit from the integration of prior information in terms of must-link constraints. Very recently the use of such constraints has been integrated in a rigorous manner also in graph-based methods such as normalized cut. On the other hand spectral clustering as relaxation of the normalized cut has been shown to be among the best methods for video segmentation. In this paper we merge these two developments and propose to learn must-link constraints for video segmentation with spectral clustering. We show that the integration of learned must-link constraints not only improves the segmentation result but also significantly reduces the required runtime, making the use of costly spectral methods possible for today’s high quality video.
منابع مشابه
Learning Shape Segmentation Using Constrained Spectral Clustering and Probabilistic Label Transfer
We propose a spectral learning approach to shape segmentation. The method is composed of a constrained spectral clustering algorithm that is used to supervise the segmentation of a shape from a training data set, followed by a probabilistic label transfer algorithm that is used to match two shapes and to transfer cluster labels from a training-shape to a test-shape. The novelty resides both in ...
متن کاملConstrained Spectral Clustering using L1 Regularization
Constrained spectral clustering is a semi-supervised learning problem that aims at incorporating userdefined constraints in spectral clustering. Typically, there are two kinds of constraints: (i) must-link, and (ii) cannot-link. These constraints represent prior knowledge indicating whether two data objects should be in the same cluster or not; thereby aiding in clustering. In this paper, we pr...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملConstrained Spectral Clustering with Distance Metric Learning
Spectral clustering is a flexible clustering technique that finds data clusters in the spectral embedding space of the data. It doesn’t assume convexity of the shape of clusters, and is able to find non-linear cluster boundaries. Constrained spectral clustering aims at incorporating user-defined pairwise constraints in to spectral clustering. Typically, there are two kinds of pairwise constrain...
متن کاملA Semi-Supervised Approach for Kernel-Based Temporal Clustering
Temporal clustering refers to the partitioning of a time series into multiple nonoverlapping segments that belong to k temporal clusters, in such a way that segments in the same cluster are more similar to each other than to those in other clusters. Temporal clustering is a fundamental task in many fields, such as computer animation, computer vision, health care, and robotics. The applications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014